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Abstract

The transport of the two-dimensional electron gas formed at an AlGaN/GaN heterostructure in the presence of strain

polarization fields is investigated. For this purpose, we develop a deterministic multigroup model to the Boltzmann trans-

port equations. The envelope wave functions for the confined electrons are calculated using a self-consistent Poisson–

Schrödinger solver. The electron gas degeneracy and hot phonons are included in our transport equations. Numerical

results are given for the dependence ofmacroscopic quantities on the electric field strength and on time and for the electron

and phonon distribution functions. We compare our results to those of Monte Carlo simulations and with experiments.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The application of GaN and related nitride semiconductors is of great interest in the fabrication of mod-

ern semiconductor devices, since these materials demonstrate an essential radiation hardness and operate at

high voltages and high temperatures [1]. In addition, nitride heterostructures feature the formation of high-

mobility two-dimensional electron gas (2DEG) channels due to their strong spontaneous and piezoelectric

polarization. The sheet electron density can exceed 1013 cm�2 without intentional doping, especially at

AlGaN/GaN heterojunctions. Hence, the high electron density combined with high operational voltages

makes AlGaN/GaN channels attractive for high-power/high-frequency applications.
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.
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In this paper, we propose multigroup model equations for directly solving the transport equations, which

govern the particle distribution at an AlGaN/GaN heterojunction. As shown recently [2], the longitudinal

optical (LO) phonon controlled energy dissipation and hot phonon effects as well as the degeneracy of the

2DEG play an important role for the particle transport in such structures. Therefore, the kinetic equations,

on which our multigroup model is based, are the two-dimensional Bloch–Boltzmann–Peierls (BBP) equa-
tions for electrons and polar optical phonons [3,4]. The quantitative comparisons of simulations and exper-

iments can only be satisfying, when the physics of the considered problem is regarded in detail. Hence, the

potential confining the electrons at the heterojunction is assembled in our simulations as the self-consistent

solution to the Poisson–Schrödinger system, fully based on material data for GaN and AlGaN.

So far, mainly Monte Carlo techniques have been used for investigating the carrier transport in hetero-

structure channels. However, the treatment of such problems by means of deterministic approaches consti-

tutes an interesting alternative to the usual procedure, since these methods provide noise-free results and

high efficiency when studying transient regimes, as it has been shown for the particle transport in polar
semiconductors [5,6]. To our knowledge, the application of deterministic solution techniques to the BBP

equations for the investigation of hot-phonon effects and degeneracy phenomena at AlGaN/GaN hetero-

junctions has not been performed yet.

Our paper is organized as follows: Section 2 describes the physical model on which our calculations are

based. In Section 3, we present the 2D-BBP equations and summarize the transition rates, which are

applied for modeling the electron–phonon interactions. In Section 4, we introduce the multigroup model

equations used for investigating the transport of the 2DEG at an AlGaN/GaN heterostructure. Finally,

Section 5 deals with our numerical results. We present the self-consistent solution of the Poisson–Schrö-
dinger system for the confining potential at the AlGaN/GaN heterojunction as well as the stationary-state

values and the transients of macroscopic quantities in comparison to Monte Carlo calculations and exper-

iments. Additionally, distribution functions for both the electrons and the LO phonons are displayed.
2. The physical model

Weconsider the transport of a 2DEG formed at awurtzite,Ga-faceAlGaN/GaNheterojunction consisting
of a 25 nm Al0.15Ga0.85N undoped layer and a thick undoped GaN layer. The c-axis of the wurtzite lattice is

assumed to be perpendicular to theAlGaN/GaN interface. This allows us to describe the quantum states of the

electrons at the interface with one transverse effective massm* and one set of energy subbands with the energy

eigenvalues em and the normalized envelope wave functions um. In contrast to the confined electrons, we treat

the phonons as three-dimensional particles. This is reasonable because of the small changes in the mechanical

parameters at the AlGaN/GaN heterojunction. In Fig. 1, we display the geometry used in our considerations.

The z-axis is chosen normal to the AlGaN/GaN interface at z = 0.Hence, electrons are confined in z-direction

and move semiclassically free in the (x,y) plane parallel to the heterojunction. This homogeneous transport is
driven by an electric field Ek ¼ ðEx; 0; 0Þ in x-direction. We include scattering mechanisms for the electrons

caused by acoustic and longitudinal optical phonons in our transport model. Scattering by ionized impurities

is neglected since we deal with an undoped heterojunction, where the 2DEG is induced only by spontaneous

and piezoelectric polarization charges. In the considered range of the electric field strength, electron scattering

into upper valleys is supposed to be negligible. Thus, we employ a one-valley multi-subband spherical, para-

bolic model band structure. Electron real space transfer and sharing effects are neglected in our calculations.

The electron energy Em(ki) in the mth energy subband and the electron wave vector ki are related by the

spherical, parabolic energy momentum rule [3]
EmðkkÞ ¼
�h2k2k
2m� þ em; ð1Þ
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Fig. 1. Schematic illustration of the AlGaN/GaN heterojunction including the chosen coordinate systems for space and wave vectors

of electrons and phonons.
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with ki = jkij. This implies that the modulus of the electron wave vector kmk in the subband m is determined by

kmkðEÞ ¼ ½2m�ðE � emÞ�1=2HðE � emÞ=�h with the Heaviside function H for the given energy E. The energy of

longitudinal optical (LO) phonons �hxLO is connected with the phonon wave vector q according to the

Einstein approximations �hxLO(q) = �hxLO [7].
3. 2D Bloch–Boltzmann–Peierls equations and 2D transition rates

The electron system is described by a set of one-particle distributions functions fm(ki,t), which gives the

probability to find an electron in the infinitesimal volume d2ki around ki at time t in the mth subband. The evo-
lution equation for fm(ki,t) is the 2D electron Bloch–Boltzmann–Peierls equation. Expressing ki in polar coor-

dinates km
k ¼ ðkmkðEÞ cos h; kmkðEÞ sin hÞwith the polar angle h between ki and Ei (cp. Fig. 1) and introducing the

new unknown function F mðE; h; tÞ ¼ Zm
elðEÞf mðE; h; tÞ with the electron density of states Zm

elðEÞ ¼
m�HðE � emÞ=4p2�h2, we obtain the energy dependent formulation of the 2D electron BBP equation. It reads
otF m þ oE am1ðE; hÞF m
� �

þ oh am2ðE; hÞF m
� �

¼ C1½F m� þ C2½F m�; ð2Þ

with
am1ðE; hÞ ¼ � eEx

m� �hkmkðEÞ cos h; am2ðE; hÞ ¼
eEx

�hkmkðEÞ
sin h. ð3Þ
In this equation, two types of scattering mechanisms are included. The collision term
C1½F m� ¼
X
l

Z 1

0

dE0
Z 2p

0

dh0fc1ðkm
k � kl0

k ÞF lðkl0
k Þ½Zm

elðEÞ � F mðkm
kÞ�gðkm

k � kl0
k ÞdðE0 � E þ �hxLOÞ

þ c1ðkl0
k � km

kÞF lðkl0
k Þ½Zm

elðEÞ � F mðkm
kÞ�½gðk

l0
k � km

kÞ þ 1�dðE0 � E � �hxLOÞ
� c1ðkl0

k � km
kÞF mðkm

kÞ½Z
l
elðE0Þ � F lðkl0

k Þ�gðk
l0
k � km

kÞdðE0 � E � �hxLOÞ
� c1ðkm

k � kl0
k ÞF

mðkm
kÞ½Z

l
elðE0Þ � F lðkl0

k Þ�½gðk
m
k � kl0

k Þ þ 1�dðE0 � E þ �hxLOÞg; ð4Þ

with the scattering function c1 depending on the interaction mechanism and km

k ¼ km
kðE; hÞ, k

l0
k ¼ kl

kðE0; h0Þ
couples the electron-LO phonon system. On the other hand, C2½F m� refers to an elastic scattering mechanism

with the scattering function c2,
C2½F m� ¼
X
l

Z 1

0

dE0
Z 2p

0

dh0fc2ðkl0
k ; k

m
kÞF lðkl0

k Þ½Zm
elðEÞ � F mðkm

kÞ�

� c2ðkm
k; k

l0
k ÞF mðkm

kÞ½Z
l
elðE0Þ � F lðkl0

k Þ�gdðE0 � EÞ; ð5Þ
where km
k ¼ km

kðE; hÞ and kl0
k ¼ kl

kðE0; h0Þ.
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Similarly as for electrons, we represent the wave vector q of LO phonons in cylindrical coordinates

q ¼ ðqk cos f; qk sin f; qzÞ, where qi is the modulus of qi, i.e., the projection of q onto the (x–y) plane, and

f is the polar angle between qi and Ei as illustrated in Fig. 1. Here, we introduce the 2D LO

phonon distribution g(qi,t), which is obtained from the 3D distribution function by averaging it with

respect to qz. The dynamics of LO phonons is governed by a phonon BBP equation similar to that
of the electrons. Defining G(q,f,t) = ZLO(qi)g(q,f,t) with the LO phonon density of states ZLO(qi) =

qi/4p
2 leads to
otG ¼ D1½G� þD2½G�. ð6Þ
Electron–phonon interaction is described by the collision term
D1½G� ¼
X
m;l

Z 1

0

dE
Z 2p

0

dhfc1ðkm
k; k

m
k � qkÞF mðkm

kÞ½1� f lðkm
k � qkÞ�½GðqkÞ þ ZLOðqkÞ�dðE0 � E þ �hxLOÞ

� c1ðkm
k; k

l
k þ qkÞF mðkm

kÞ½1� f lðkm
k þ qkÞ�½GðqkÞ�dðE0 � E � �hxLOÞg. ð7Þ
The phonon–phonon interaction term D2 is considered according to the relaxation time approximation
D2½G� ¼ � 1

sLO
½GðqkÞ � ZLOðqkÞgBE�; ð8Þ
with the Bose–Einstein distribution gBE = [exp(�hxLO/kBTL) � 1]�1 and the relaxation time sLO.
Concerning the transition rates for electron–phonon interactions, we apply the following. The electrons

interact with acoustic phonons through the deformation potential and the electrostatic polarization asso-

ciated with atomic vibrations. In wurtzite structures, the deformation potential in the central valley is a

diagonal second-rank tensor D. The value of Dzz is in general different from Dxx = Dyy. However, experi-

mental data are not available for these quantities. Therefore, we assume equal diagonal elements and treat

the deformation potential tensor as a scalar quantity [8]. This implies that the scattering function c2,ADP for

acoustic deformation potential scattering reads in the elastic approximation as
c2;ADPðkm
k; k

l0
k Þ ¼

2pD2
AkBT L

�hqv2s

1

W lm
; ð9Þ
with vs ¼ ðvlv2t Þ
1=3

and
1

W lm
¼
Z 1

�1
dzjulðzÞj

2jumðzÞj
2
. ð10Þ
The strength of the piezoelectric scattering is determined by the dimensionless electromechanical cou-

pling coefficient K2, which contains contributions of both the longitudinal (LA) and the transverse (TA)

acoustic phonons. Following [9], we obtain
K2 ¼ he2LAi
jste0cLA

þ he2TAi
jste0cTA

; ð11Þ
where cLA and cTA are the angular averages of the elastic constants describing the propagation of LA and

TA waves and
he2LAi ¼
1

105
½8ð2e15 þ e31Þ2 þ 12ð2e15 þ e31Þe33 þ 15e233�; ð12aÞ

he2TAi ¼
1

105
½6ðe33 � e15 � e31Þ2 þ 16ðe33 � e15 � e31Þe15 þ 48e215�. ð12bÞ
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This implies that the scattering function c2,PZ for screened piezoelectric scattering reads
c2;PZðkm
k; k

l0
k Þ ¼

2pkBT Le2

�hjste0

K2

W lm

dlm
ðjkl0

k � km
kj þ qsÞ

2
þ 1� dlm
jkl0

k � km
kj
2

" #
; ð13Þ
with the screening parameter,
qs ¼
X
m

m�e2

2pjste0�h
2
f mð0Þ; ð14Þ
derived from the matrix-random phase approximation [10].

Electron-LO phonon coupling in wurtzite crystals is different from the well-known cubic case. The elec-

trons interact with both the longitudinal optical (LO) and the transverse optical (TO) modes rather than
with a single LO mode as in cubic lattices. However, it has been shown that the scattering rate for TO scat-

tering is more than two orders of magnitude smaller than that for LO scattering. Moreover, the LO scat-

tering rate in the cubic approximation is valid regardless of the chosen point in the Brillouin zone [11].

Hence, we use the cubic approximation and the formulation of Price [12] for the transition rates, leading

to the scattering function c1,POP for screened polar optical scattering
c1;POPðqkÞ ¼
e2x0

2e0

1

jhf

� 1

jst

� �
pdlmq2k

ðqk þ pW lmq2kÞðqk þ qsÞ
2
þ

pð1� dlmÞðalm � blmqkÞ
qk þ pW lmðalm � blmqkÞq2k

" #
; ð15Þ
with
alm
blm

 !
¼
Z 1

�1
dz
Z 1

�1
dz0

1

jz� z0j

� �
u�

mðz0Þu�
lðz0ÞumðzÞulðzÞ. ð16Þ
4. Multigroup model equations

For formulating multigroup equations to the 2D-BBP equations (2) and (6), we introduce the discreti-

zation of the independent variables E, h, qi and f according to
Eiþ1=2 ¼ e1 þ iDE; i ¼ 0; 1; . . . ;N ; DE ¼ �hxLO

nmul

; nmul 2 N; ð17aÞ

Ei ¼ e1 þ i� 1

2

� �
DE; i ¼ 1; 2; . . . ;N ; ð17bÞ

hjþ1=2 ¼ jDh; j ¼ 0; 1; . . . ;M ; Dh ¼ 2p
M

; ð17cÞ

hj ¼ j� 1

2

� �
Dh; j ¼ 1; 2; . . . ;M ; ð17dÞ

qxþ1=2 ¼ jDq; x ¼ 0; 1; . . . ;R; Dq ¼ qmax

R
; ð17eÞ

fyþ1=2 ¼ yDf; y ¼ 0; 1; . . . ; S; Df ¼ 2p
S
. ð17fÞ
Here, Emax = NDE and qmax must be chosen in a way that Fm(Emax) is negligible for all m, h and t and G(qmax)

is undisturbed by the electron–phonon interaction for all f and t. The distribution functions of electrons

and phonons are approximated as the finite sums
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Zm
elðEÞf mðE; h; tÞ ¼

XN
i¼1

XM
j¼1

nmijðtÞdðE � EiÞdðh� hjÞ; ð18aÞ

Zm
elðEÞ½1� f mðE; h; tÞ� ¼

XN
i¼1

XM
j¼1

½1mij � nmijðtÞ�k
E
i ðEÞdðh� hjÞ; ð18bÞ

ZphðqkÞgðqk; f; tÞ ¼
XR
x¼1

XS
y¼1

rxyðtÞkqx ðqkÞk
f
yðfÞ; ð18cÞ

ZphðqkÞ½gðqk; f; tÞ þ 1� ¼
XR
x¼1

XS
y¼1

½rxyðtÞ þ 1pxy �k
q
x ðqkÞk

f
yðfÞ; ð18dÞ
with N · M coefficients nmij for each electron subband and R · S phonon coefficients rxy. We remark that
nmij ¼ 0 for Ei < em for all h and t. In ansatz (18), we use
kEi ðEÞ ¼
�E�1; if E 2 ½Ei�1=2;Eiþ1=2�;
0; if E 62 ½Ei�1=2;Eiþ1=2�;

(
ð19Þ
and corresponding expressions for kqi ðqkÞ and kfi ðfÞ. Additionally, we apply
1mij ¼
m�

4p2�h2
½HðEiþ1=2 � emÞEiþ1=2 �HðEi�1=2 � emÞEi�1=2�Dh; ð20aÞ

1pxy ¼
1

8p2
½q2xþ1=2 � q2x�1=2��f. ð20bÞ
Forming moments of (18) reveals that the macroscopic quantities electron density Ænmæ, drift velocity Ævmæ
in direction of the electric field and mean energy ÆEmæ in the mth subband as well as the phonon density Ænpæ
are simply given by
hnmðtÞi ¼ 2
XN
i¼1

XM
j¼1

nmijðtÞ; ð21aÞ

hvmðtÞi ¼ 2�h
m�hnmðtÞi

XN
i¼1

XM
j¼1

kmkðEiÞ cos hjnmijðtÞ; ð21bÞ

hEmðtÞi ¼ 2

hnmðtÞi
XN
i¼1

XM
j¼1

EinmijðtÞ; ð21cÞ

hnpðtÞi ¼
XR
x¼1

XS
y¼1

rxyðtÞ. ð21dÞ
The evolution equations for the coefficients nmij and rxy are obtained by inserting (18) into the 2D-BBP

equations (2) and (6) and integrating the result over the cells Cij = [Ei� 1/2,Ei+1/2] · [hj� 1/2,hj+1/2] and

Dxy = [qx� 1/2,qx+1/2] · [fy� 1/2,fy+1/2], respectively. This procedure yields
onmij
ot

þ am1ðEiþ1=2; hjÞ½nE;mij �þ � am1ðEi�1=2; hjÞ½nE;mij �� þ am2ðEi; hjþ1=2Þ½nh;mij �
þ � am2ðEi; hi�1=2Þ½nh;mij �

�

¼ C1½nmij� þ C2½nmij�;
orxy
ot

¼ 2D1½rxy � þD2½rxy �;

ð22Þ
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when applying an upwind scheme with linear approximations for the fluxes at the boundaries of Cij

with
½nE;mij �þ ¼
nmij þ

sE;mij

2
; if am1ðEi; hjÞ > 0;

nmiþ1;j �
sE;m
iþ1;j

2
; if am1ðEi; hjÞ < 0;

8<
: ð23aÞ

½nE;mij �� ¼
nmij �

sE;mij

2
; if am1ðEi; hjÞ < 0;

nmi�1;j þ
sE;m
i�1;j

2
; if am1ðEi; hjÞ > 0;

8<
: ð23bÞ
and sE;mij ¼ MMðnmiþ1;j � nmij; n
m
ij � nmi�1;jÞ. The MinMod slope limiter [13] is defined by
MMða; bÞ ¼
0; if ab < 0;

maxða; bÞ; if a < 0;

minða; bÞ; if a > 0.

8><
>: ð24Þ
Similar expressions are used for determining ½nh;mij �
þ
and ½nh;mij �

�
.

The electron collision terms C1½nmij� and C2½nmij� read
C1½nmij� ¼
X
l

XR
x¼1

XS
y¼1

XN
a¼1

XM
b¼1

fhSl!m
ab!ij;xyi

þnlab½1mij � nmij�rxy þ hSl!m
ab!ij;xyi

�nlab½1mij � nmij�½rxy þ 1pxy �

� hSm!l
ij!ab;xyi

þnmij½1
l
ab � nlab�rxy � hSm!l

ij!ab;xyi
�nmij½1

l
ab � nlab�½rxy þ 1pxy �g; ð25aÞ

C2½nmij� ¼
X
l

XN
a¼1

XM
b¼1

fhCl!m
ab!ijin

l
ab½1mij � nmij� � hCm!l

ij!abinmij½1
l
ab � nlab�g; ð25bÞ
with the collision coefficients
hSm!l
ij!ab;xyi

� ¼
Z
Cij

dEdh
Z
Cab

dE0 dh0
c1½�ðkl0

k � km
kÞ�

ZLOðjkl0
k � km

kjÞ
dðE � EiÞkEa ðE0Þdðh� hjÞdðh0 � hbÞkqx ðjk

l0
k � km

kjÞ

� kfyð�acosjkl0
k � km

kj
�1Þex � ðkl0

k � km
kÞ�dðE0 � E � �hxLOÞ; ð26aÞ

hCl!m
ab!iji ¼

Z
Cij

dEdh
Z
Cab

dE0 dh0c2ðkm
k; k

l0
k ÞdðE � EiÞkEa ðE0Þdðh� hjÞdðh0 � hbÞdðE0 � EÞ. ð26bÞ
In addition, the phonon collision terms D1[rxy] and D2[rxy] are given by
D1½rxy � ¼
X
m;l

XN
i¼1

XM
j¼1

XN
a¼1

XM
b¼1

nmij½1
l
ab � nlab�fhS

m!l
ij!ab;xyi

�½rxy þ 1pxy � � hSm!l
ij!ab;xyi

þrxyg; ð27Þ

D2½rxy � ¼
1

sLO
½1pxygBE � rxy �. ð28Þ
For computing the screening parameter for polar optical and piezoelectric scattering, it is necessary to

determine the electron distribution functions at the bottoms of the subbands. These quantities fm(0) are
approximated via
f mð0Þ ¼
XM
j¼1

nmIm
min

;j

1mIm
min

;j

; ð29Þ
where Immin is the energy index so that em 2 ½EIm
min

�1=2;EIm
min

þ1=2�.
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5. Numerical results

The simulations shown in this section are performed for the lattice temperature TL = 300 K and the sheet

electron density n = 5 · 1012 cm�2 by taking into account the four lowest energy subbands. Concerning the

parameters used in our numerical scheme, we setN = 60,M = 24, nmul = 10. This implies thatEmax = 0.55 eV.
Additionally, we useR = 50 and S = 24 with the maximum wave vector qmax = 3.6 · 109 m�1. Initial data for

the coefficients nmij and rxy are obtained by integrating the Fermi–Dirac distribution and the Bose–Einstein dis-

tribution over the cellsCij andDxy, respectively. The stationary state is assumed to be reached approximately

at 10 ps after the onset of the electric field. All of the required constants are found in Table 1.

5.1. Confining potential

We solve the coupled system of the effective mass Schrödinger and the Poisson equations self-consis-
tently for computing the confining potential and the energy subband structures needed for our transport

equations. Therefore, we proceed as follows [3]. In a 2DEG confined in a quantum well at a heterojunction,

the electrons move in the potential
Table

Mater

Quant

Electro

Static

HF di

Lattice

Acous

Longit

Transv

Mass

Longit

Transv

Piezoe

Sponta

Elastic

Avera

Phono

Interfa

a Re
b Re
c Re
d Re
e Re
f Re
V ðzÞ ¼ �eWðzÞ þ DEcHðz� z0Þ. ð30Þ

Here, e is the elementary charge,W(z) denotes the electrostatic potential depending on the position z normal

to the AlGaN/GaN interface at z0 = 0 nm (cp. Fig. 1). The symbol DEc labels the interface barrier. The elec-
trostatic potential is related to the charge distribution by the Poisson equation
1

ial parameter for the 2DEG simulation

ity Symbol Unit GaN Al0.15Ga0.85N

n effective massa m* 0.22 me

dielectric constanta jst 8.9

electric constantb jhf 5.23

constantsc a nm 0.3189 0.3177

c nm 5.185

tic deformation potentialb DA eV 8.3

udinal sound velocityb vl m s�1 6560

erse sound velocityb vt m s�1 2680

densityb q kg m�3 6150

udinal optical phonon energyb �hxLO meV 91.2

erse optical phonon energyd �hxTO meV 69.5

lectric constantsc e31 C m�2 �0.49 �0.506

e33 C m�2 0.73 0.839

e15 C m�2 �0.3

neous polarizationc Psp C m�2 �0.029 �0.0368

constantsc c13 GPa 103.0 103.75

c33 GPa 405.0 400.2

ged elastic constantse cLA GPa 265

cTA GPa 44.2

n relaxation timef sLO ps 1

ce barrierf DEc eV 0.6

f. [14].

f. [15].

f. [16].

f. [11].

f. [17].

f. [2].
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d

dz
jstðzÞ

d

dz

� �
WðzÞ ¼ � e

j0

½N fðzÞ � nðzÞ�; ð31Þ
where jst is the static dielectric constant, j0 is the permittivity of free space, Nf(z) stands for the space

dependent fixed charge given by the structure of the heterojunction, and n(z) denotes the charge distribution

of the quantum confined electrons. This quantity can be evaluated via
nðzÞ ¼
X
m

m�ðzÞkBT L

p�h2
ln 1þ exp

Ef � em
kBT L

� �� �
jumðzÞj

2
; ð32Þ
with the lattice temperature TL and the Fermi energy Ef for parabolic energy subbands (1) and Fermi sta-
tistics taking into account degeneracy effects of the electron gas. The charge of the two-dimensional con-

fined electrons depends on the subband envelope functions and the eigenenergies. These quantities are

the solutions of the one-dimensional effective mass Schrödinger equation
� �h2

2

d

dz
1

m�ðzÞ
d

dz

� �
þ V ðzÞ

� �
umðzÞ ¼ emumðzÞ. ð33Þ
We apply an iteration procedure to solve (31) and (33). To begin with, we insert a trial 2DEG charge

distribution n(z) into the Poisson equation (31). This leads to a confining potential V(z) via (30), which

is used in the Schrödinger equation (33) to determine eigenenergies and wave functions. The 2DEG density

is corrected with the help of these quantities according to (32). All these calculations are performed by using

standard numerical methods. Subsequent iterations lead to the final self-consistent solution for V(z), em and
um with the required accuracy.

As shown in [16], spontaneous and piezoelectric polarization play an important role in the quantum-

confinement of electrons at AlGaN/GaN interfaces. Hence, we take into account the polarization
charge
r ¼ P spð0.15Þ � P spð0Þ þ 2
að0Þ � að0.15Þ

að0.15Þ e31ðzÞ � e33ðzÞ
C13ð0.15Þ
C33ð0.15Þ

� �
ð34Þ
for the fixed charge Nf in (31). In the considered configuration, r is positive and free electrons tend to com-

pensate for it. Following [2], we use a value for the interface band offset DEc twice as high as found in the

literature [16]. This prevents electrons from entering the AlGaN layer considerably, and we can neglect elec-

tron sharing effects. This assumption is justified at not too high electric fields.

Fig. 2 displays the resulting self-consistent solution for the confining potential V(z) and the first four

eigenenergies and envelope wave functions, which are used in our transport simulations. Moreover, this fig-

ure shows the self-consistent solution for the 2DEG density. The scattering probabilities in our transport
model are calculated for these equilibrium self-consistent wave functions. For saving computational time,

no field-induced modulations on the em and um are taken into account. Electron scattering into higher valleys

is neglected, hence we deal with a spherical and parabolic one-valley many-subband model. These assump-

tions are valid for the range of electric field strengths under consideration.
5.2. Macroscopic quantities

In Fig. 3, we show the results for the electron velocity-field characteristics at an AlxGa1�xN/GaN het-
erojunction at 300 K, simulated by means of our multigroup equations. Three cases are considered: includ-

ing the degeneracy of the 2DEG but neglecting hot phonon effects, neglecting the degeneracy of the electron

gas and taking into account hot phonon effects, and including both the degeneracy of the 2DEG and hot

phonons into the transport model. The simulations show that the electron gas degeneracy as well as the hot

phonon effects influence the electron drift velocity in the investigated range of the electric field. Hence, both
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effects must be taken into account for good agreement with experimental data [18]. Moreover, we observe

excellent agreement of our results with those of MC calculations [2].

When degeneracy is neglected, the drift velocity exceeds that obtained by the full model. This can be
explained in terms of the angular dependence of the final electron states after phonon emission. Small angle

scattering by phonon emission processes is the dominant scattering mechanism for electrons with wave vec-

tors in direction of the drift velocity, if the degeneracy is neglected. When the Pauli principle is applied, this

small angle scattering rate reduces dramatically, since the corresponding final states are occupied. Conse-

quently, the probability for large angle scattering is enhanced, and electrons are forced to scatter to final
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states in opposite direction of the drift velocity. This implies a strong negative contribution to the drift

velocity. Since the mean electron energy increases as the electric field increases, electron gas degeneracy

effects decrease with the rising electric field. Hence, the drift velocity curves calculated with and without

degeneracy tend to merge at high fields [2].

When the hot phonon effects are not taken into account, the calculated drift velocity exceeds consider-
ably the experimental data and the results of the simulation for the complete model. Hence, hot phonon

effects can be regarded as quite important in nitride heterostructures. Due to the enhanced phonon occu-

pation number (cp. Fig. 10), hot phonons support a stronger scattering of electrons. The scattering caused

by the optical phonon absorption increases because of the phonon reabsorption; the scattering caused by

phonon emission increases due to the stimulated emission. This explains the essential reduction in the drift

velocity when hot phonons are taken into account. The stronger the electric field, the more pronounced are

the hot phonon effects [2].

Finally, we note a deviation of the calculated drift velocity from the experimental data in Fig. 3 for fields
higher than 10 kV cm�1. It is known that electron sharing influences the experimental results on the drift

velocity at stronger electric fields [18]. The sharing of electrons by the AlxGa1�xN and the GaN layer

has not been taken into account in this simulation, which leads to the higher calculated drift velocity in

comparison to the experimentally determined one for high fields.

In Figs. 4–6, we depict the temporal evolution of the densities, the velocities and the mean energies of

electrons confined at an AlxGa1�xN/GaN heterojunction for the three lowest subbands in response to

the onset of an electric field pulse of the strength E ¼ 10 kV cm�1. Solid lines refer to calculations taking

into account hot phonons; the dashed curves are obtained by assuming equilibrium phonons. In both sim-
ulations, degeneracy of the 2DEG is regarded. For times t < 0.2 ps, the results of the two considered cases

almost agree, while the increasing phonon density (cp. Fig. 10) leads to significant differences in the mac-

roscopic quantities for later times in correspondence with the stationary state values displayed in Fig. 3.

The most interesting result of these simulations is the behavior of the drift velocity with time. We observe

a velocity overshoot as it is expected for the relatively high electric field. In the case of the equilibrium

phonon calculation, this velocity overshoot is caused by the ballistic transport of electrons right after

the onset of the electric field, when the distribution function is shifted by the electric field but hardly altered
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Fig. 4. Temporal evolution of the electron densities in the three lowest subbands of a 2DEG formed at an AlGaN/GaN heterojunction

after the onset of the electric field with jEij = 10 kV cm�1. Solid lines: hot phonons; dashed lines: equilibrium phonons.



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14
x 10

4

Time [ps]

V
el

oc
ity

 [m
s

]
Subband 1

Subband 2

Subband 3

Total

Fig. 5. Temporal evolution of the drift velocities in the three lowest subbands of a 2DEG formed at an AlGaN/GaN heterojunction

after the onset of the electric field with jEij = 10 kV cm�1. Solid lines: hot phonons; dashed lines: equilibrium phonons.

0 0.5 1 1.5 2

0.05

0.1

0.15

0.2

0.25

Time [ps]

E
ne

rg
y 

[e
V

]

Total

Subband 3

Subband 2

Subband 1

Fig. 6. Temporal evolution of the mean energies in the three lowest subbands of a 2DEG formed at an AlGaN/GaN heterojunction

after the onset of the electric field with jEij = 10 kV cm�1. Solid lines: hot phonons; dashed lines: equilibrium phonons.

530 M. Galler, F. Schürrer / Journal of Computational Physics 210 (2005) 519–534
by scattering events. This ballistic motion contributes to the velocity overshoot in the hot phonon simula-

tion as well; however, the dominant reason for the decrease of the velocity with increasing time is the

enhanced phonon scattering caused by the non-equilibrium phonons. Their effect is strong enough to cause

a velocity overshoot, not only in the lowest subband as it is the case in the equilibrium phonon simulation,

but also for the higher ones. Moreover, we note that the maximum velocity achieved is much lower in the

case of taking into account non-equilibrium phonons. Hence, simulations aimed at designing GaN-based
heterostructure semiconductor devices, which take advantage of velocity overshoots for reducing switching

times, must include hot phonon effects for not overestimating the achievable performance of such devices.
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5.3. Distribution functions

One of the advantages of handling the Bloch–Boltzmann–Peierls equations with the help of deterministic

solution methods is the availability of the particle distribution functions in noise-free resolution. Moreover,

the consideration of two-dimensional transport problems allows the illustration of the whole information
on the distribution function without an averaging procedure. Hence, we regard the following figures as

quite illustrative.

Figs. 7–10 depict the stationary-state electron distribution functions for the three lowest energy bands

and the associated longitudinal optical phonon distribution function at the AlxGa1�xN/GaN heterojunc-
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Fig. 7. Stationary-state electron distribution function in the first subband f 1 versus the wave vector ki at an AlGaN/GaN

heterojunction under the influence of the electric field jEij = 10 kV cm�1.
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tion. In this simulation, the electric field is set to E ¼ 10 kV cm�1. The distribution functions f m
ij and gxy in

the points km
ij ¼ kmkðEiÞðcos hj; sin hjÞ and qxy ¼ qxðcos fy ; sin fyÞ are approximated via f m

ij ¼ nmijHðEi � emÞ=1mij
and gxy ¼ rmxy=1

p
xy .

In Figs. 7–9, we observe that the electron distribution functions can be seen as shifted Fermi–Dirac dis-

tributions with some abrupt changes in their falling with rising energies. This finer structure is related to the
onset of possible intersubband scattering. In contrast to bulk polar semiconductors with their large differ-

ences in the effective masses of C-valley and L-valley electrons, the density of states is the same for all sub-

bands for 2DEGs. This results in the less pronounced decline in the distribution function of a subband
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when starting to overlap with another one in comparison to the bulk case when intervalley scattering begins

to take place [5].

In Fig. 10, we see the reason for the strong influence of the hot phonon effect on the electron drift veloc-

ity. The phonon distribution function is significantly enhanced in comparison to its equilibrium Bose–

Einstein value (equals here the value in the undisturbed regions for large qi). Another interesting feature
of g is its behavior for very small qi. In bulk semiconductors, there exists a value qmin > 0 so that scattering

by phonons with jqj < qmin is prohibited because of the conservation of momentum and energy. In confined

systems, qmin tends to zero, since the constant optical phonon energy is converted into potential energy of

electrons by intersubband scattering processes. Thus, the phonon distribution function does not exhibit an

undisturbed region centered at qi = 0 in the case of two-dimensional transport but only a small inversion as

it is observable in Fig. 10.
6. Conclusion

We present multigroup model equations for directly solving the two-dimensional Bloch–Boltzmann–

Peierls equations, which govern the transport of electrons and LO phonons at heterojunctions. With the

help of this deterministic approach, we investigate the two-dimensional electron transport in AlGaN/

GaN heterostructures in presence of strain polarization fields. The envelope wave functions for the confined

electrons are calculated using a self-consistent Poisson–Schrödinger solver. The electron gas degeneracy

and hot phonons are included in our transport equations. Numerical results are given for the field and time
dependence of macroscopic quantities and for the electron and the phonon distribution functions. The

obtained results exhibit good agreement with those of Monte Carlo simulations.
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